# **UK Meteor Beacon**

**Introduction & Progress Report** 

### **Project Objectives**

- To provide a means of observing meteor events over the UK by day and by night
- To encourage interest in Radio and Astronomy by developing interesting STEM projects for schools and colleges building on the interest in space.
- To provide a means of studying meteor events in detail with higher resolution.

#### **Science Objectives**

- 1. Accurate meteor counts to assist in identifying new meteor streams and detecting outbursts in current ones. Show meteor rates of showers over subsequent years
- 2. Show meteor peaks of known showers hour by hour
- 3. Cross correlation of radio traces with BRAMs and Graves beacons. Comparing time, frequency, intensity, Doppler shift, duration
- 4. Cross correlation of radio traces with UKMON video camera observations
- 5. Compute trajectories of meteoroids using data from multiple receiving stations determination of meteor stream orbits and potentially narrowing down the landing locations for meteorites
- 6. Study the impact of high-altitude winds on the plasma trails
- 7. D and E layer studies of the ionosphere
- 8. HF/VHF emissions from meteors
- 9. Estimation of the mass index of a meteor shower
- 10.Calculate meteor fluxes
- 11.Insights into meteoroid fragmentation processes

## Planning

- Phase 1
  - Establish a transmitter beacon at a central point in the UK
  - Encourage STEM and citizen science projects featuring radio astronomy
- Phase 2
  - Establish an initial network of 3 receivers streaming their data via a central server where those studying meteor events over the UK can access the data, initially in the form of a waterfall display.
- Secure funding for this work

#### Progress & next steps

- Phase 1:
  - The transmitter beacon is operational.
  - Funding has been secured for the beacon and 3 years operating costs.
  - This project has been supported by the RSGB Legacy Fund and the British Astronomical Association

Phase 2:

- The receivers are under development, and the first unit is ready for deployment
- Streaming servers and associated software are well advanced
- Funding received for 3 receivers

#### **UK Meteor Beacon Phase 1**



The Beacon was installed at the Sherwood Observatory of the Mansfield and Sutton Astronomical Society on 14<sup>th</sup> May 2022.

#### The Beacon Hardware





#### **GB3MBA 6m Meteor Beacon**

IO93JC, Crossed Moxon Antenna, beaming vertically, RHCP, 100W PA, 50.408 MHz

Forward Power 74.7 W Oscillator Locked Dump Power 0.4 W PA Voltage 25.9 V PA Temperature 39.5 °C

Antenna Good Status Battery 10.7 V

Beacon Keeper: Peter G3PHO, Hardware Design: Brian G4NNS, Web Interface: Heather M0HMO, PA Design: Andy G4JNT.

The beacon status can be found at https://ukmeteorbeacon.org/Bstatus

#### Phase 2: Objectives

- Not everyone will be able to build their own receiving system.
- Some will not have space for an antenna or may live in an electrically noisy environment.
- Phase II of this project is to design, build and deploy a number of web based receivers accessible to all.

#### Phase 2: Progress

- Receivers
  - Receiver hardware design complete and first unit ready for installation
  - Need to provide reliable timing data (100µs)
  - Streaming software and hardware integrated into receiver
- Servers & Software
  - Software under development.
  - Demonstration system operational for Persides

#### Architecture



#### **Receiver Design**



#### **Precision Timing**



Timing pulses are injected into the receiver at 50.406MHz. The leading edge is synchronous to UTC and their duration is used to encrypt the date, time and receiver I/d.



The team are currently working on the design of the receivers.

#### **Receiver Location**

#### GB3MBA A UK based Meteor Beacon on 50.408MHz



The beacon "illuminates" a region with a radius of about 200km. Echoes from meteor trails can be seen as far away as about 1200km while receivers within about 400km of the beacon will also see aircraft reflections.

#### Networked receiver locations



Site search criteria:

- Preferably over 400km from transmitter to avoid carrier reception
- Less than 1200km from transmitter to receive adequate signal

#### Possible locations:

- North Scotland, Shetland
- Ireland
- Europe?

Test receiver at Norman Lockyer Observatory Sidmouth

Potential site: Goonhilly Down Cornwall



#### Live streaming

Devon: <a href="https://batc.org.uk/live/gb3mba2">https://batc.org.uk/live/gb3mba2</a> Hampshire: <a href="https://batc.org.uk/live/gb3mba">https://batc.org.uk/live/gb3mba</a>

These live streams may not work with Firefox.

#### Phase 3: Science

- We believe it may be possible to compute the velocity and trajectory of a meteor using the Doppler shift of head echoes measured at an instant and from multiple locations.
- Head echoes are polarised and directional so not all observers will see them.
- Timing and frequency between receivers needs to be precise.
- Complex signal processing required.
- Automated pipeline to detect events and flag for analysis.
- There are many challenges to achieving our ambition of triangulating the location and trajectory of meteors without using a pulsed radar system which would not be permitted.

## Questions

### Anatomy of an Echo

- Meteor echoes usually exhibit two components.
  - A "head" which is very short lived, less than 500mS and which exhibits rapidly changing Doppler shift.
  - A "Tail" echo with little Doppler Shift and lasts much longer from seconds to minutes. Tail echoes are used for Meteor Scatter Communications.





Viewed in detail this head echo starts at about +1KHz and ends at about – 400Hz. There is little or no tail echo. Head echoes barely get a mention in most studies of meteor radio echoes.



The Doppler shift at a given instant is a function of the rate of change of the path distance from the beacon transmitter, via the meteor and on to the receiver.

