Status of the BRAMS and MOMSTER projects

BRAMS network : status in August 2023

- 46 active receiving stations.
- One interferometer located in Humain (red circle)

Characteristics of the BRAMS transmitter

General Characteristics

- ✓ *f*=49.97 MHz
- CW with no modulation
- ✓ Nominal radiated power: 130 Watts
- ✓ circular polarization towards zenith

Mechanical Characteristics of the transmitter

- two horizontal, mutually orthogonal, half-wave dipoles mounted on a mast
- 70 cm above an 8-m x 8-m metal grid acting as a ground plane
- grid at ~65 cm above actual ground
- 90° phase shift between dipoles (common feed via a Tee and 2 lengths of coax with difference in length of ¼ wavelength).

Monitoring of the BRAMS transmitter

- Recent problems with our power amplifier from the Australian company TOMCO
- Need for a regular monitoring
- Currently done in 2 ways :
 - ✓ Measuring the voltages directly at the amplifier itself (for ~ 1 year)
 - ✓ Using a directional coupler to measure transmitted and reflected power (over a large frequency range, for ~ 6 months)
- The amplifier sometimes shows unexpected behavior + some dependance with temperature (no controlled environment)

Applications 🗄 🧾 ionomodel_iri.	m — K	ig_rz.dat — KWrite	iri2016	2	ferminal - brams@bra	E Ti
8				Termina	- brams@brams-bea	acon:
File Edit View Terminal Tabs	Help					
023-05-20T09:37:49	24.0 °C	133.63 W	2.47	W	1.31:1	
023-05-20109:38:49	24.0 °C	133.60 W	2.45	W	1.31:1	
023-05-20109:39:49	24.0 °C	133.61 W	2.46	W	1.31:1	
023-05-20T09:40:49	24.0 °C	133.52 W	2.45	W	1.31:1	
023-05-20T09:41:49	24.0 °C	133.66 W	2.46	W	1.31:1	
023-05-20T09:42:49	24.0 °C	133.60 W	2.45	W	1.31:1	
023-05-20T09:43:49	24.0 °C	133.64 W	2.45	W	1.31:1	
023-05-20T09:44:49	24.0 °0	133.61 W	2.45	W	1.31:1	
023-05-20T09:45:49	24.0 °C	133.64 W	2.44	W	1.31:1	
023-05-20T09:46:49	24.0 °0	133.53 W	2.45	W	1.31:1	
rams@brams-beacon:- \$	tail dat	ta/birdRF5014.log	-n20			
023-05-22T04:06:19	25.7 °C	128.95 W	2.37	W	1.31:1	
023-05-22T04:07:19	25.7 °C	129.00 W	2.38	W	1.31:1	
023-05-22T04:08:19	25.7 °C	129.02 W	2.37	W	1.31:1	
023-05-22T04:09:20	25.7 °0	129.04 W	2.38	W	1.31:1	
023-05-22T04:10:20	25.7 °C	128.96 W	2.37	W	1.31:1	
023-05-22T04:11:20	25.7 °C	128.97 W	2.38	W	1.31:1	
023-05-22T04:12:20	25.7 °C	129.02 W	2.37	W	1.31:1	
023-05-22T04:13:20	25.7 °C	128.91 W	2.38	W	1.31:1	
023-05-22T04:14:20	25.7 °C	128.90 W	2.37	W	1.31:1	
023-05-22T04:15:20	25.7 °C	128.89 W	2.37	W	1.31:1	
023-05-22T04:16:20	25.7 °C	128.93 W	2.37	W	1.31:1	
023-05-22T04:17:20	25.7 °C	128.93 W	2.37	W	1.31:1	
023-05-22T04:18:20	25.7 °C	128.76 W	2.38	W	1.31:1	
023-05-22T04:19:20	25.7 °C	128.89 W	2.37	W	1.31:1	
023-05-22T04:20:20	25.7 °C	128.91 W	2.37	W	1.31:1	
023-05-22T04:21:20	25.7 °C	128.89 W	2.38	W	1.31:1	
023-05-22T04:22:20	25.7 °C	128.92 W	2.38	W	1.31:1	
023-05-22T04:23:20	25.7 °C	128.89 W	2.37	W	1.31:1	
023-05-22T04:24:20	25.7 °C	128.91 W	2.36	W	1.31:1	
023-05-22T04 · 25 · 20	25.7 °C	128.87 W	2.38	W	1.31:1	

- In addition, we can control and reboot the signal generator remotely
- All these programs are installed on a Rpi accessible from a VLAN network in BIRA-IASB.

BRAMS network : status in August 2023

- 14 stations with ICOM / PC (Stations 1.0)
- 32 stations with RSP2 / Rpi (Stations 2.0)
- The radio interferometer in Humain (AR5001)

BRAMS receiving stations 1.0

BRAMS receiving stations 2.0

Currently RSP2 replaced by RSPDx and RPi replaced by ROCK 4 SE

Current material used for BRAMS 2.0

Radio interferometer in Humain

Principle

$$\phi_{10} = -2\pi \frac{d}{\lambda}\sin\xi$$

Jones et al (1998)

$$\phi_{10} = -\frac{2\pi d_1}{\lambda} \sin \xi \qquad \qquad \sin \xi = -\frac{\lambda}{2\pi} \frac{(\phi_{10} - \phi_{20})}{(d_1 + d_2)}$$
$$\phi_{20} = +\frac{2\pi d_2}{\lambda} \sin \xi \qquad \qquad \qquad \sin \xi = -\frac{\lambda}{2\pi} \frac{(\phi_{10} + \phi_{20})}{(d_1 - d_2)}$$

$$d_1 = 2.5 \lambda$$
$$d_2 = 2 \lambda$$

Principle (2)

Jones et al (1998)

Angles of arrival

$$\beta = \tan^{-1}\left(\frac{\cos\xi_2}{\cos\xi_1}\right)$$

$$\alpha = \cos^{-1}\left(\frac{\cos\xi_2}{\cos\beta}\right) = \cos^{-1}\left(\frac{\cos\xi_1}{\cos\beta}\right)$$

 α : elevation β : azimuth (measured from North toward East)

An example

RAD_BEDOUR_20161205_0035_BEHUMA_SYS006: 16384-14488

Time (sec)

Frequency

Phase differences between antenna pairs

Each color = 1 frequency

 $\sin \xi = -\frac{\lambda}{2\pi} \frac{\phi_{10} - \phi_{20}}{(d_1 + d_2)}$ $\sin \xi = -\frac{\lambda}{2\pi} \frac{(\phi_{10} + \phi_{20})}{(d_1 - d_2)}$

Sum & Diff of phase differences

Angles of arrival

Meteoroid trajectory and speed : method 1

Specular reflection : $S_i = R_{Ti} + R_{Ri}$ must be minimum for each station *i* **6 unknowns**: 3 coordinates of one specular point

 P_0 + 3 components of speed **v** (assumed to be constant)

6 equations : dS_i / dt = 0 i=1, ..., 6

Set of \geq 6 non-linear equations which contains the time delays Δt_i between appearances of meteor echoes at station *i* and a reference station.

Non-linear solver + additional constraints on height of the specular reflection point (e.g., between 85 and 110 km) and speed values (≥ 11 km/s)

Example of reconstruction : method 1

Reconstruction of trajectory 79 - Method 1 - Reference station = BEHUMA

X	Target solution
-	Target trajectory
0	Theoretical specular points
\times	BEHUMA
*	BEDOUR
	BEDOUR – BEHUMA specular point
	BEHUMA specular point - BEHUMA station
٥	Stations used
	Stations not used
*	Best solution
-	Reconstructed trajectory

Reference specular point error [km] = 11.43 Velocity norm error [km/s] = 2.06 Angle error [°] = 1.14

Example of reconstruction : method 2

Theoretical specular points

-BEDOUR - BEHUMA specular point BEHUMA specular point - BEHUMA station

X Target solution Target trajectory

Stations used

Stations not used
Best solution
Reconstructed trajectory

BEHUMA

Reconstruction of trajectory 79 - Method 2 - Reference station = BEHUMA

Reference specular point error [km] = 0.83 Velocity norm error [km/s] = 0.89 Angle error [°] = 0.09

Technical improvements for the BRAMS network in the frame of SORBET

Increase of power

- Two main reasons :
 - Some receiving stations are affected by local noise at our frequency that we cannot prevent. Usually, the background noise is ~ 5-6 dB too high and hides the fainter echoes for which SNR becomes too low
 - 2. Beyond 200-250 km from Tx, most Rx will only catch bright meteor echoes, which limits the sampled volume and prevents an international extension of the BRAMS network
- Recently we experienced issues with our power amplifiers, which revealed some unexpected and unwanted behavior. Need to replace them anyway!
- Goal : to transmit ~ 400 W CW + temperature-controlled environment (cabin)
- Currently in the process of buying a new PA from a German company (MA). It would be custom-made for our frequency (MA)

Add of a second interferometer

Large empty area near a National Park Collaboration with Hasselt University

Noise measurements

Add of a second transmitter

- Idea : use f = 49.9707 MHz → meteor echoes in the same audio bandwidth of current receivers
- Current Rx stations can be used as such. We double the number of pairs Rx-Tx
- RSP2 : still a lot of dynamics → no saturation
- Location : North of Belgium (red circle)

The MOMSTER project : BRAMS goes to schools

https:// momster.aeronomie.be

Conclusions

- BRAMS network has reached technical maturity and is continuously expanding
- We are looking for stations in Germany near the Belgian border.
- MOMSTER project : looking for people interested in promoting this. We can share details. Maybe looking at EU funding?

Questions?

